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Abstract
The quantum dynamics of a two-level system coupled to a shape-invariant
potential is investigated. Shape-invariant potentials share an integrability
condition called shape invariance which identifies an underlying algebraic
structure, in general infinite dimensional, that transforms the potential
parameters such as strength, range and diffuseness. We determine the time-
evolution operator, the density operator of the system, and obtain the temporal
behaviour of various dynamical variables by considering either pure or mixed
initial states of the system, constructed with the generalized coherent state
of the shape-invariant coupling potential. We consider specific examples of
shape-invariant coupling potentials (harmonic oscillator, Pöschl–Teller and
self-similar potentials). The results obtained for all dynamical variables exhibit
rapid oscillations which periodically collapse and regenerate in different ways
depending on the coupling potential nature.

PACS numbers: 03.65.−w, 03.65.Ge, 03.65.Fd

1. Introduction

Supersymmetric quantum mechanics [1] is usually studied in the context of one-dimensional
systems. The partner Hamiltonians

Ĥ 1 = − h̄2

2m

d2

dx2
+ V−(x) = h̄� Â†Â and Ĥ 2 = − h̄2

2m

d2

dx2
+ V+(x) = h̄� ÂÂ†

(1.1)

can be written in terms of one-dimensional operators

Â ≡ 1√
h̄�

(
W(x) +

i√
2m

p̂

)
and Â† ≡ 1√

h̄�

(
W(x) − i√

2m
p̂

)
(1.2)
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where h̄� is a constant energy scale factor, introduced so that the operators Â and Â† are
dimensionless, and W(x) is the superpotential which is related to the potentials V±(x) via

V±(x) = W 2(x) ± h̄√
2m

dW(x)

dx
. (1.3)

A number of such pairs of Hamiltonians Ĥ 1,2 share an integrability condition called shape
invariance [2]. Although not all exactly-solvable problems are shape-invariant [3], shape
invariance, especially in its algebraic formulation [4–6], proved to be a powerful technique
to investigate exactly-solvable systems. Previous attempts to generalize supersymmetric
quantum mechanics and the concept of shape invariance beyond one-dimensional and
spherically-symmetric three-dimensional problems include non-central [7], non-local [8] and
periodic [9] potentials; a three-body problem in one dimension [10] with a three-body force
[11]; N-body problem [12] and coupled-channel problems [13, 14].

In earlier publications [15, 16] we introduced a class of coupled-channel problems which
generalize the Jaynes–Cummings Hamiltonian [17], a simple model which is extensively used
in quantum optics where the radiation, represented by a harmonic oscillator, is coupled to
an atom, represented by a two-level system. A two-level system may approximate a number
of interesting physical situations [18]. For such an approach to be operable the system
in consideration should have two states whose energies are close together and sufficiently
different from all the other energy levels of the system. Under these conditions, if we want
to evaluate the effect of a sufficiently weak external perturbation on these two states, to a
first approximation, we can ignore all the other energy levels of the system and perform the
calculations in a two-dimensional subspace of the energy state space [19]. The field of the
quantum optics is the best-known example of the success of this procedure.

In the present paper, we study the quantum dynamics of a class of coupled-channel
problems where a two-level system is coupled to a shape-invariant potential. We consider two
possible forms of coupling: a constant coupling and an intensity-dependent coupling. Using
other shape-invariant potentials besides the harmonic oscillator leads to non-trivial coupled-
channel problems which may find applications in molecular, atomic or nuclear physics.
Being exactly solvable, our model may help in assessing the validity and accuracy of various
approaches to coupled-channel problems. In this context, we obtain the explicit expressions
for the time-evolution operator and the density operator.

We use generalized coherent states associated with shape-invariant potentials, obtained
in a previous study [20], to construct either a pure or a mixed initial state of the system. We
then evaluate the expectation values of various dynamical variables of the system, such as the
population inversion factor, the intensity of the shape-invariant coupling (usually called the
excitation number) and the Mandel parameter, which represents deviations of the state of
the system from the coherent state.

This paper is organized as follows: in section 2 we review the algebraic formulation of
the shape invariance; in section 3 we present the Hamiltonian for a two-level system coupled
to a general shape-invariant potential and obtain the eigenstates of that system; in section 4
we introduce the density operator formalism for the two-level coupled system and obtain the
expression for the density matrix as a function of the time considering pure or mixed initial
states; in section 5 we apply the density operator formalism to obtain the expectation values
of the dynamical variables cited above and in section 6 we apply our generalized result for
three different kinds of coupling potentials (the harmonic oscillator, the Pöschl–Teller and the
self-similar potentials) and discuss the behaviour of the dynamical variables for each system.
Finally, a conclusion and brief remarks close the paper in section 7.
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2. Algebraic formulation and coherent states for shape-invariant systems

The Hamiltonian Ĥ 1 of equation (1.1) is called shape-invariant if the condition,

Â(a1)Â
†(a1) = Â†(a2)Â(a2) + R(a1), (2.1)

is satisfied [2]. In this equation a1 and a2 represent a set of parameters that specify space-
independent properties of the potentials (such as strength, range and diffuseness). The
parameter a2 is a function of a1 and the remainder R(a1) is independent of the dynamical
variables such as position and momentum. As it is written the condition of equation (2.1)
does not require the Hamiltonian to be one-dimensional, and one does not need to choose
the ansatz of equation (1.2). In the cases studied so far the parameters a1 and a2 are either
related by a translation [3, 21] an = a1 + (n − 1)η or a scaling [6, 20, 22] an = a1q

n−1 with
n ∈ Z. Concrete examples for shape-invariant condition of equation (2.1) are presented in
the cited references. Introducing the operator T̂ ≡ T̂ (a1) and the similarity transformation
T̂ Ô(a1)T̂

† = Ô(a2) that replace a1 with a2 in a given operator Ô(a1) [4, 6] and the operators

B̂+ = Â†(a1)T̂ and B̂− = B̂†
+ = T̂ †Â(a1), (2.2)

the Hamiltonians of equation (1.1) take the forms Ĥ 1 = h̄�B̂+B̂− and Ĥ 2 = h̄�T̂ B̂−B̂+T̂
†.

As is shown in [4], with equation (2.1) one can also easily prove the commutation relation

[B̂−, B̂+] = T̂ †R(a1)T̂ ≡ R(a0), where we used the identity R(an) = T̂ R(an−1)T̂
†
, valid for

any n ∈ Z. This commutation relation suggests that B̂− and B̂+ are the appropriate creation
and annihilation operators for the spectra of the shape-invariant potentials provided that their
non-commutativity with R(a1) is taken into account. The additional relations

R(an)B̂+ = B̂+R(an−1) and R(an)B̂− = B̂−R(an+1), (2.3)

readily follow from these results. Considering that the ground state of the Hamiltonian Ĥ 1

satisfies the condition Â|0〉 = 0 = B̂−|0〉, then, using the above relations it is possible to find
the nth excited state of Ĥ 1

Ĥ1|n〉 ≡ h̄�(B̂+B̂−)|n〉 = h̄� en|n〉 and B̂−B̂+|n〉 = {en + R(a0)}|n〉 (2.4)

where these eigenstates can be written in a normalized form as

|n〉 = 1√
R(a1) + R(a2) + · · · + R(an)

B̂+ · · · 1√
R(a1) + R(a2)

B̂+
1√

R(a1)
B̂+|0〉 (2.5)

with the eigenvalues En = h̄� en, with e0 = 0 and

en =
n∑

k=1

R(ak), for n � 1. (2.6)

Coherent states [23] are quantum-mechanical states which provide a close connection
between quantum and classical formulations of a given physical system. Based on the
Heisenberg–Weyl group and applied specifically to harmonic oscillator system, the original
coherent state introduced by Schrödinger has been extended to a large number of Lie groups
with square integrable representations [23]. Today these extensions are used in many
applications in a number of contexts, especially in quantum optics and radiophysics. In a
previous work [24], we showed that the coherent states for shape-invariant systems with an
infinite number of energy levels can be obtained in a generalized way:

|z; aj 〉 =
∞∑

n=0

{zZj B̂
−1
− }n|0〉, z,Zj ∈ C, (2.7)
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where the right inverse operator for B̂− is defined by the relation B̂−1
− = Ĥ−1B̂+ with

Ĥ ≡ B̂+B̂−, and we used the shorthand notation Zj ≡ Z(a1, a2, a3, . . .) for an arbitrary
functional of the potential parameters, introduced to establish a more general approach. With
the relation (2.3) we can prove that this coherent state is the eigenstate of the operator B̂−
since

B̂−|z; aj 〉 = zZj−1|z; aj 〉, (2.8)

where Zj−1 = T̂ †Zj T̂ = Z(a0, a1, a2, . . .). In a non-normalized Glauber’s form [25], this
coherent state can be written in terms of the eigenstates of the Hamiltonian Ĥ 1 as [24]

|z; ar〉 =
∞∑

n=0

zn

hn(ar)
|n〉, (2.9)

where we used the shorthand notation hn(ar) ≡ hn[a1, a2, . . . , an] for the expansion
coefficients, which are given by h0(ar) = 1 and

hn(ar) =
n−1∏
s=0

[√
en − es

Zj+s

]
, for n � 1, (2.10)

with en given by equation (2.6) and Zj+s = T̂ sZj T̂
†s = Z(a1+s , a2+s , a3+s , . . .). The

generalized coherent state in (2.9) possesses the basic requirements necessary for a close
connection between classical and quantum formulations of a given system [24], such as label
continuity, the resolution of unity, temporal stability and the action identity.

3. A two-level system coupled to a shape-invariant potential

3.1. Hamiltonian

In treating two-level systems it is often handy to use a 2 × 2 matrix notation. The Hamiltonian
that describes the coupling of a two-level system with a shape-invariant potential can be
decomposed in the following form,

Ĥ = Ĥ0 + Ĥ(x)
int , (3.1)

where

Ĥ0 = h̄� Ŝ2, with Ŝ = σ̂+Â + σ̂−Â†, (3.2)

and the operators Â and Â† satisfy the shape invariance condition of equation (2.1). In this
study, we consider two possible forms for the interaction Hamiltonian,

Ĥ(u)
int = h̄λ(Ŝ + �σ̂3) and Ĥ(i)

int = h̄λ(K̂† Ŝ K̂ + �σ̂3), (3.3)

where K̂ = K̂† = 1
2 [(1̂ + σ̂3) + (1̂ − σ̂3)

√
Â†Â]. The expressions for Ĥ(u)

int and Ĥ(i)
int represent

the constant (x = u) [17] and intensity-dependent (x = i) [26] couplings, respectively. In
these equations λ is a constant related to the coupling strength, � is a constant related to the
detuning of the system and the two-level flip operators are defined by σ̂± = 1

2 (σ̂1 ± iσ̂2),

where σ̂i , for i = 1, 2 and 3, are the Pauli matrices. Note that for the harmonic oscillator
potential, the simplest shape-invariant potential, we have the standard and intensity-dependent
versions of the Jaynes–Cummings model, which is of fundamental importance for the field of
the quantum optics.

The algebraic formulation presented in section 2 can be applied in the Hamiltonian (3.1)
by using the B̂± operators introduced by equation (2.2). If we define the matrix

T̂ = 1
2 [(1̂ + σ̂3)T̂ + (1̂ − σ̂3)] (3.4)
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and decompose the Hamiltonian ĥ in

ĥ = ĥ0 + ĥ(x)
int , (3.5)

with

ĥ0 = h̄� ŝ2, and ŝ = σ̂+B̂− + σ̂−B̂+, (3.6)

the final result can be written as

Ĥ = T̂ĥT̂†. (3.7)

The interaction Hamiltonian ĥ(x)
int can be written as

ĥ(u)
int = h̄λ(ŝ + �σ̂3) and ĥ(i)

int = h̄λ(k̂†ŝ k̂ + �σ̂3), (3.8)

with the k̂ matrix given by k̂ = k̂† = 1
2 [(1̂ + σ̂3) + (1̂ − σ̂3)

√
B̂+B̂−]. In writing these

expressions we used definition (3.3) and the unitary property T̂ †T̂ = T̂ T̂ † = 1̂.

3.2. Eigenstates and eigenvalues

As shown in [15, 16], the eigenstates of Ĥ, obtained from the solution of the eigenvalue
equation

Ĥ|�n〉 = En|�n〉, (3.9)

are given by

∣∣�(±)
0

〉 =
[

0
|0〉

]
,

∣∣�(±)
n

〉 =
[
T̂ (a1)N

(±)
n |n〉

±N
(±)
n+1 |n + 1〉

]
, n = 1, 2, 3, . . . , (3.10)

where N
(±)
n,n+1 ≡ N

(±)
n,n+1[R(a1), R(a2), R(a3), . . .] are auxiliary normalization coefficients

which are related by the constraint N
(±)
n+1 = N(∓)

n . In the resonant limit (� = 0) it is
possible to show that N(±)

n = N
(±)
n+1 = 1/

√
2. Depending on the coupling interaction form, the

corresponding eigenvalues are given by

E(±)
n = h̄�en+1 ± h̄λ




√
en+1 + �2 for x = u;√
e2
n+1 + �2 for x = i.

(3.11)

3.3. Time evolution operator

By using the Hamiltonian (3.1) presented above we can write the Schrödinger equation for a
two-level system coupled with a shape-invariant potential as

Ĥ|�(t)〉 = ih̄
∂

∂t
|�(t)〉, where |�(t)〉 =

[|�α(t)〉
|�β(t)〉

]
. (3.12)

Introducing the wavefunction |ψ(t)〉 by |�(t)〉 = T̂|ψ(t)〉 and using it in equations (3.12) we
find

ĥ|ψ(t)〉 = ih̄
∂

∂t
|ψ(t)〉, (3.13)

where we used the unitary matrix property T̂T̂† = T̂†T̂ = 1̂. If we write the wavefunction
|ψ(t)〉 as

|ψ(t)〉 = exp(−iĥ0t/h̄)|ψi(t)〉, (3.14)
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and use it in (3.13) with the commutation property between ĥ0 and ĥ(x)
int , we obtain

ĥ(x)
int |ψi(t)〉 = ih̄

∂

∂t
|ψi(t)〉. (3.15)

Defining the time-evolution operator ûi (t, 0) for the interaction Hamiltonian ĥ(x)
int by |ψi(t)〉 =

ûi (t, 0)|ψi(0)〉, and using it in equation (3.15) it is possible to find

ĥ(x)
int ûi (t, 0) = ih̄

∂

∂t
ûi (t, 0). (3.16)

To diagonalize this time-evolution matrix differential equation one can differentiate
equation (3.16) with respect to time once more. We find

∂2

∂t2
ûi (t, 0) +

1

h̄2

[
ĥ(x)

int

]2
ûi (t, 0) = 0, (3.17)

which, in a matrix form, can be written as[
û′′

11 û′′
12

û′′
21 û′′

22

]
+

[
ω̂2

x1 0
0 ω̂2

x2

] [
û11 û12

û21 û22

]
= 0, (3.18)

where the primes denote the time derivative and


ω̂u1 = λ

√
B̂−B̂+ + �2, ω̂u2 = λ

√
B̂+B̂− + �2, for x = u;

ω̂i1 = λ

√
(B̂−B̂+)2 + �2, ω̂i2 = λ

√
(B̂+B̂−)2 + �2, for x = i.

(3.19)

Since by initial conditions ûi (0, 0) = 1̂, and, also by the unitarity conditions we must have
û†

i (t, 0)ûi (t, 0) = ûi (t, 0)û†
i (t, 0) = 1̂, we can write the solution of the time-evolution matrix

differential equation (3.18) as

ûi (t, 0) =
[

cos(ω̂x1t) sin(ω̂x1t)Ĉ

−sin(ω̂x2t)Ĉ
† cos(ω̂x2t)

]
, with Ĉ = i

(B̂−B̂+)1/4

√
B̂−. (3.20)

With this result we can write the final expression for the wavefunction of the system as

|�(t)〉 = T̂ exp(−iĥ0t/h̄)ûi (t, 0)|ψi(0)〉, (3.21)

which is valid for any shape-invariant potential coupling a two-level system. As a final remark,
we observe that the time-evolution operator ûi (t, 0) only contains the operators B̂±.

4. The density operator

In discussing two-level systems, we have so far characterized the quantum states in terms
of two-component wavefunction |�(t)〉, presented in (3.12). However, an elegant and very
useful way of representing the state of a quantum system is by using the Hermitian density
matrix ρ̂, defined as

ρ̂(t) =
∑

k

pk|�k(t)〉〈�k(t)|, (4.1)

where pk is the probability associated with the state |�k(t)〉. The normalization condition of
|�(t)〉 requires that Tr ρ̂(t) = 1. For a pure state (when all probabilities pk are zero, except
one), a system can be described equally well either by a density operator or by a state vector.
However, in the description of a mixed case (a statistical mixture of states), the density matrix
formalism presents unquestionable advantages. The time evolution of the density operator
is determined by solving the equation of motion ih̄ρ̂ ′ = [Ĥ, ρ̂], obtained from the definition
of the density matrix and the Schrödinger equation. Knowledge of ρ̂(t) enables us to obtain
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all other physical quantities since the time evolution of any observable represented with the
operator Ô can be obtained by its expectation value evaluated with the density operator of the
system

〈Ô(t)〉 = Tr{ρ̂(t)Ô}
Tr ρ̂(t)

. (4.2)

To obtain the expectation value of any observable operator it is necessary to calculate the
matrix elements of the density operator. To apply the density matrix formalism for the
coupled two-level problem we use the state vector given in (3.21) to obtain

ρ̂(t) = T̂
[
exp(−iĥ0t/h̄)ûi (t, 0)ρ̂(0)û†

i (t, 0) exp(iĥ0t/h̄)
]
T̂† (4.3)

where the initial density operator is given by ρ̂(0) = |ψi(0)〉〈ψi(0)|. Therefore, to get a final
expression for the time evolution of the density operator we must define the initial quantum
state of the system. We first consider a coherent state, the most classical quantum state
[27–30]. We assume that the two-level system starts in its lower energy state, i.e.

|ψi(0)〉 =
[

0
1

]
⊗ |z〉 =

[
0
|z〉

]
and ρ̂(0) = 1

2
(1̂ − σ̂3)|z〉〈z|. (4.4)

For any analytical function f (x) it is easy to show that B̂±f (B̂∓B̂±) = f (B̂±B̂∓)B̂±. Using
this property and expression (4.4) for ρ̂(0) it is possible to show that the time-evolved density
matrix operator (4.3) can explicitly be expressed as

ρ̂(t) =
[
|α1(t)〉〈α1(t)| |α1(t)〉〈α2(t)|
|α2(t)〉〈α1(t)| |α2(t)〉〈α2(t)|

]
where

{
|α1(t)〉 = T̂ Ĉ e−i�B̂+B̂−t sin(ω̂x2t)|z〉
|α2(t)〉 = e−i�B̂+B̂−t cos(ω̂x2t)|z〉.

(4.5)

We next consider the case when the two-level system starts in the state of thermal
equilibrium with temperature . We take the initial state as

|ψi(0)〉 = 1

2
[(1̂ + σ̂3)Ĉ + (1̂ − σ̂3)]

[
p̂+

p̂−

]
⊗ |z〉 =

[
Ĉp̂+|z〉
p̂−|z〉

]
(4.6)

where

p̂± = 1
2 [1 ± tanh(βω̂x2)] (4.7)

with β = h̄/kB. Thus, the overall coupled system density operator at t = 0 can be written
as

ρ̂(0) =
[|ϕ+〉〈ϕ+| |ϕ+〉〈ϕ−|
|ϕ−〉〈ϕ+| |ϕ−〉〈ϕ−|

]
(4.8)

where |ϕ+〉 = Ĉp̂+|z〉 and |ϕ−〉 = p̂−|z〉. Using these results it is possible to show that the
time-evolved density matrix operator (4.3) still has the same form presented by equation (4.5),
but now with the time-dependent states |α1,2(t)〉 given by{

|α1(t)〉 = T̂ Ĉ e−i�B̂+B̂−t {cos(ω̂x2t)p̂+ + sin(ω̂x2t)p̂−}|z〉
|α2(t)〉 = e−i�B̂+B̂−t {cos(ω̂x2t)p̂− − sin(ω̂x2t)p̂+}|z〉.

(4.9)
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5. Temporal behaviour of the quantum dynamical variables

5.1. Population inversion factor

For a coupled two-level system an important physical quantity is the population inversion
factor [26, 29], defined as

Ŵ ≡ σ̂+σ̂− − σ̂−σ̂+ = σ̂3. (5.1)

The population inversion factor, also called degree of excitation of the system, is typically
the simplest nontrivial physical quantity which can be used to analyse the quantum dynamic
behaviour of such systems. Inserting the time-evolved density matrix operator (4.3) and the
wave state expression (3.21) into equation (4.2) and taking into account the commutation
property between ĥ0 and T̂ with σ̂3, we obtain

〈Ŵ(t)〉 = 〈ψi(0)|ρ̂(0)ûi (t, 0)†σ̂3ûi (t, 0)|ψi(0)〉
〈ψi(0)|ρ̂(0)|ψi(0)〉 . (5.2)

Using the operator properties Ĉω̂x2 = ω̂x1Ĉ and ĈĈ† = Ĉ†Ĉ = 1 and taking into account
equation (3.20) for ûi (t, 0) we can show that

〈Ŵ(t)〉 = 1

〈ψi(0)|ψi(0)〉

{
〈ψi(0)

∣∣∣∣∣
[

cos(2ω̂x1t) sin(2ω̂x1t)Ĉ

sin(2ω̂x2t)Ĉ
† −cos(2ω̂x2t)

]∣∣∣∣∣ψi(0)〉
}

. (5.3)

To get an expression for 〈Ŵ(t)〉 we must define the initial state of the system. We assume that
the coupled two-level system starts in its pure state (4.4), with the coupling potential coherent
state given by equation (2.9), we find the expression

〈Ŵ(t)〉 = −〈z; ar | cos(2ω̂x2t)|z; ar〉
〈z; ar |z; ar〉 (5.4)

which, using the series expansion of the cosine function, can be written as

〈Ŵ(t)〉 = −
[

1 +
∞∑

k=1

(2it)2k

(2k)!

〈z; ar |ω̂2k
x2|z; ar〉

〈z; ar |z; ar〉

]
. (5.5)

Using equation (3.19) we conclude that{
〈z; ar |ω̂2k

u2|z; ar〉 = λ2k〈z; ar |(B̂+B̂− + �2)k|z; ar〉, for x = u;
〈z; ar |ω̂2k

i2 |z; ar〉 = λ2k〈z; ar |[(B̂+B̂−)2 + �2]k|z; ar〉, for x = i.
(5.6)

To calculate the matrix elements in (5.6) we use expression (2.9) and the commutation between
any function of the parameters an and the couple of operators B̂±B̂∓, to show that

〈z; ar |(B̂+B̂− + �2)k|z; ar〉/〈z; ar |z; ar〉 =
∞∑

n=0

Cn(en + �2)k

/ ∞∑
n=0

Cn, k � 1, (5.7)

and

〈z; ar |[(B̂+B̂−)2 + �2]k|z; ar〉/〈z; ar |z; ar〉 =
∞∑

n=0

Cn

(
e2
n + �2

)k

/ ∞∑
n=0

Cn, k � 1, (5.8)

where the expansion coefficients are given by C0 = 1 and

Cn = (z∗z)n

h∗
n(ar)hn(ar)

= (z∗z)n
n−1∏
s=0

[Z∗
j+sZj+s

en − es

]
, n � 1. (5.9)
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Taking into account the results (5.7) and (5.8) in the matrix elements (5.6) and the series
expansion of the cosine function, it is possible to find the following expression for the
population inversion factor (5.5),

〈Ŵ(t)〉 = −
∞∑

n=0

Cn cos
(
2ϑ(x)

n τ
)/ ∞∑

n=0

Cn, (5.10)

where τ = λt is a dimensionless time-associated variable and

ϑ(u)
n =

√
en + �2, while ϑ(i)

n =
√

e2
n + �2. (5.11)

The sum (5.10) has no known finite analytic expression in the general case. However
the physical significance of 〈Ŵ(t)〉 is that it represents, on a scale between −1 and +1, the
degree of excitation of a two-level system induced by the coupling shape-invariant potential
whose quantum state at t = 0 is the fully coherent state |z; ar〉. In this sense, equation (5.10)
can be considered as the generalization for all shape-invariant coupling potentials of the well-
known expression originally obtained for two-level atom interacting with radiation [29]. The
behaviour of the population inversion factor can be summarized in the following way: if the
two-level system is initially in the lower energy state, then the probability for the two-level
system to be found in the excited state at the time t regardless of the state of the coupling
potential is given by the weighted sum (5.10), which can be rewritten as

〈Ŵ(t)〉 = −
∞∑

n=0

P(n, z) cos
(
2ϑ(x)

n τ
)
, (5.12)

where the weight is given by

P(n, z) = Cn

/ ∞∑
n=0

Cn, (5.13)

with the weight factor Cn of (5.9). Since each term in the sum (5.10) has a different frequency,
as the time increases they become uncorrelated and interfere destructively, causing a collapse
in the inversion population factor (〈Ŵ(t)〉 ≈ 0). The discrete character of the sum over the
quantum states in the coherent state ensures that, after some finite time, all the oscillating
terms come back almost in phase with each other, restoring the coherent oscillations and
creating periodic revivals in the population inversion factor (periodic packets of finite 〈Ŵ(t)〉
oscillations). However, as the frequencies are not necessarily integers and thus may be
incommensurate, the re-phasing is not perfect. Both collapses and revivals in the population
inversion factor are purely quantum effects resulting from the discreteness of the coupling
potential spectrum and have no classical counterparts. It should be emphasized that the
phenomenon of decay and regeneration of the population inversion factor is well known in a
few restricted cases, such as quantum optics [29] and a single trapped ion moving in a harmonic
potential [31]. Until now, all these known cases of collapse and revival phenomena had been
restricted to the harmonic oscillator coupling potential. However, the results found show that
the occurrence of this interesting quantum phenomenon is related to the model properties, like
the kind of interaction and the coherent-state associated with the coupling potential.

We next consider an initial situation where the coupled two-level system starts in the state
(4.6) with |z〉 given by the coupling potential coherent state |z; ar〉. In this case, using the
operator properties cited before, we find the following expression:

〈Ŵ(t)〉 = 〈z; ar |
[
p̂2

+ − p̂2
−
]

cos(2ω̂x2t) + 2p̂+p̂− sin(2ω̂x2t)|z; ar〉
〈z; ar |p̂2

+ + p̂2−|z; ar〉
. (5.14)
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Using the coherent state expression (2.9) for the shape-invariant coupling potential, the series
expansions of the exponential and trigonometric functions and the relations (5.6), it is possible
to rewrite (5.14) as

〈Ŵ(t)〉 =
∞∑

n=0

[
PC(n, z, β) cos

(
2ϑ(x)

n τ
)

+ PS(n, z, β) sin
(
2ϑ(x)

n τ
)]

, (5.15)

where the partial weights are

PC(n, z, β) = 2Cn

√
F

(x)
n

/ ∞∑
n=0

[
1 + F (x)

n

]
Cn (5.16)

PS(n, z, β) = [
1 − F (x)

n

]
Cn

/ ∞∑
n=0

[
1 + F (x)

n

]
Cn (5.17)

with F (x)
n = tanh2

(
βλϑ(x)

n

)
. The factors Cn and ϑ(x)

n are given by (5.9) and (5.11), respectively.
Note that if we take the limit βλ → −∞ then tanh

(
βλϑ(x)

n

) → −1 and we reproduce the
result obtained for the pure state case, characterized by p̂− → 1 and p̂+ → 0.

5.2. Intensity of the shape-invariant coupling

If we define the quantity N̂B = 1
2 [1̂ − σ̂3]B̂+B̂−, then its expectation value allows us to

understand the global influence of the coupling. This definition represents a generalization of
the excitation number N̂ used in quantum optics. If we insert the time-evolved density matrix
operator (4.3) and the wave state expression (3.21) into equation (4.2) and take into account
the commutation property between ĥ0 and T̂ with σ̂3, we obtain

〈N̂B(t)〉 = 〈ψi(0)|ρ̂(0)ûi (t, 0)†N̂Bûi (t, 0)|ψi(0)〉
〈ψi(0)|ρ̂(0)|ψi(0)〉 . (5.18)

Using the operator properties Ĉω̂x2 = ω̂x1Ĉ and ĈĈ† = Ĉ†Ĉ = 1 and taking into account
equation (3.20) for ûi (t, 0) we can show that

〈N̂B(t)〉 = 1

〈ψi(0)|ψi(0)〉

×
{

〈ψi(0)

∣∣∣∣∣
[

B̂−B̂+ sin2(ω̂x1t) − 1
2 B̂−B̂+ sin(2ω̂x1t)Ĉ

− 1
2 B̂+B̂− sin(2ω̂x2t)Ĉ

† B̂+B̂− cos2(ω̂x2t)

]∣∣∣∣∣ψi(0)〉
}

.

(5.19)

To find an expression for 〈N̂B(t)〉 we must define the initial state of the system. If we
assume that the coupled two-level system starts in the pure state of (4.4), with the coupling
potential coherent state given by equation (2.9), we find the expression

〈N̂B(t)〉 = 〈z; ar |B̂+B̂− cos2(ω̂x2t)|z; ar〉
〈z; ar |z; ar〉 (5.20)

which, using the series expansion of the cosine function, can be written as

〈N̂B(t)〉 =
∞∑

n=0

P(n, z)en cos2
(
ϑ(x)

n τ
)
. (5.21)
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If we assume the system instead starts in the state (4.6) where the state |z〉 is given by |z; ar〉,
we find the following expression,

〈N̂B(t)〉 = 〈z; ar |B̂+B̂−
{[

p̂2
+ + p̂2

−
] − [

p̂2
+ − p̂2

−
]

cos(2ω̂x2t) − 2p̂+p̂−sin(2ω̂x2t)
}|z; ar〉

2〈z; ar |p̂2
+ + p̂2−|z; ar〉

(5.22)

which, with the series expansion of the cosine function, can be written as

〈N̂B(t)〉 = 1

2

∞∑
n=0

[
PO(n, z, β) − PC(n, z, β) cos

(
2ϑ(x)

n τ
) − PS(n, z, β) sin

(
2ϑ(x)

n τ
)]

en,

(5.23)

where the partial weights PC(n, z, β) and PS(n, z, β) are still given by equations (5.16) and
(5.17), while

PO(n, z, β) = [
1 + F (x)

n

]
Cn

/ ∞∑
n=0

[
1 + F (x)

n

]
Cn. (5.24)

5.3. Mandel parameter for the distribution deviations

The final dynamical variable we wish to study is the generalization of the Mandel parameter
defined as

QM(t) = [�N̂B(t)]2 − 〈N̂B(t)〉
〈N̂B(t)〉 , where [�N̂B(t)]2 = 〈

N̂2
B(t)

〉 − 〈N̂B(t)〉2 (5.25)

which measures the deviation from the regular coherent state quantum states distribution
P(n, z). Using the properties of the B̂ operators presented in the first section and the coherent
state definition (2.8) it is easy to verify that the Mandel parameter assumes the values −1 for
the pure coupling potential quantum state |n〉 and the critical coherent value

Qch = |z|2[|Zj−2|2 − |Zj−1|2] + R1 − 1 (5.26)

for the pure coupling potential generalized coherent state |z; ar〉. The critical value
separates the sub-coherent distribution, defined when QM(t) < Qch, from the super-coherent
distribution defined when QM(t) > Qch. As we will see in the applications of the next section,
for a harmonic oscillator coupling potential Qch = 0 and the regular distribution P(n, z) is
Poissonian.

It is straightforward to show that the Mandel parameter reads

QM(t) =
∑∞

n=0 P(n, z)e2
n cos2

(
ϑ(x)

n τ
)

∑∞
n=0 P(n, z)en cos2

(
ϑ

(x)
n τ

) −
∞∑

n=0

P(n, z)en cos2
(
ϑ(x)

n τ
) − 1 (5.27)

for the initial pure state (4.4), and

QM(t) =
∑∞

n=0

[
PO(n, z, β) − PC(n, z, β) cos

(
2ϑ(x)

n τ
) − PS(n, z, β) sin

(
2ϑ(x)

n τ
)]

e2
n∑∞

n=0

[
PO(n, z, β) − PC(n, z, β) cos

(
2ϑ

(x)
n τ

) − PS(n, z, β) sin
(
2ϑ

(x)
n τ

)]
en

− 1

2

∞∑
n=0

[
PO(n, z, β) − PC(n, z, β) cos

(
2ϑ(x)

n τ
) − PS(n, z, β) sin

(
2ϑ(x)

n τ
)]

en − 1

(5.28)

for the initial mixed state (4.6).
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6. Applications for some shape-invariant coupling potentials

In order to investigate how our general results can be applied in specific cases in this section we
consider three examples of the shape-invariant coupling potentials: the harmonic oscillator,
the Pöschl–Teller and the self-similar potentials. It should be noted that the expressions
obtained for the quantum dynamical variables of the system are general and applicable for
all shape-invariant coupling potentials. Applying the general approach for a given shape-
invariant coupling potential we need to specify only the energy spectrum en and the coherent
state form defined by the expansion coefficient hn(ar). Using these factors we obtain the
function argument ϑ(x)

n and the expansion coefficients Cn. Therefore in these applications all
we need is to specify en and hn(ar). The numerical evaluation of series is a nontrivial problem;
we used the Smith [32] routines package of multiple precision computation.

6.1. Harmonic oscillator potential

We start with this example because it is the simplest among the shape-invariant coupling
potentials. We would also like to show that our general expressions reduce to the well-
known expressions for the harmonic oscillator. The partner potentials (1.3) for this system are
obtained with the superpotential

W(x, a1) =
√

h̄�(�x + δ), (6.1)

where � and δ are real constants, and R(an) = η(an + an+1), η = √
h̄/(2m�). Since the

parameters for this potential are related by a1 = a2 = · · · = an = � we get R(an) = γ, with
γ = 2η�, and thus

en = nγ. (6.2)

The constant values of the potential parameters an imply that for this system we must have
Zj = c, a constant. Under these conditions equation (2.10) gives us hn(ar) = √

γ nn!/cn.
If we redefine the complex constant by z −→ cz/

√
γ , and take into account that |n〉 is an

element of the Fock space F ≡ {|n〉, n � 0}, we find for the coherent state (2.9)

|z; ar〉 =
∞∑

n=0

zn

√
n!

|n〉 (6.3)

which is the usual expression for bosonic coherent states [23]. The expansion coefficient Cn

and the function argument factors ϑ(x)
n are given by

Cn = |z|2n

n!
, with ϑ(u)

n =
√

γ n + �2 and ϑ(i)
n =

√
(γ n)2 + �2. (6.4)

With the expressions for Cn and ϑ(x)
n obtained we are ready to get the expressions for the

quantum dynamical variables. In this case the weight function P(n, z) is given by

P(n, z) =
( |z|2n

n!

)
e−|z|2 , (6.5)

which corresponds to a Poisson distribution centred at |z|2 with width |z|. Note that if we
use (6.5) and the series expression for the exponential function into (5.12) in the case of pure
initial state (4.4) we get the well-known expression for the population inversion factor for a
two-level atom interacting with radiation [29].

Figure 1 displays the quantum dynamical variables for the constant (x = u) interaction
case in terms of the time variable τ/π , when the initial state of the system is the pure quantum
state (4.4). In these calculations we used |z|2 = 40, γ = 1 and � = 0.2. It should be noted
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Figure 1. Time evolution of the dynamical variables for a harmonic oscillator coupling potential
in the constant interaction case (x = u) for a pure initial state. The constant values used are
|z|2 = 40, γ = 1 and � = 0.2.

that in general the dynamical variables 〈Ŵ(t)〉, 〈N̂B(t)〉 and QM(t) show Rabi oscillations
with a period τO ≈ 2π

/
ϑ

(u)
n̄ ≈ 0.7π, where n̄ = |z|2. These oscillations collapse with a

collapse time τC ≈ √
n̄π ≈ 6.3π, and the revivals, bounded by monotonically decreasing

Gaussian envelopes, recur periodically (revival time τR ≈ n̄π = 40π), become less complete
and broaden, eventually overlapping with each other at still longer times. Besides this general
behaviour, we note a little deformation in the envelope of QM(t) when we compare its bottom
and top parts. The critical coherent value of the Mandel parameter in this case is Qch = 0.
Therefore, we conclude that during the time evolution the coupling potential quantum states
distribution involved in the total system state remains super-coherent (QM(t) > Qch) almost
all the time. Only during a short time interval at the beginning this is not the case.

Figure 2 is the same as figure 1 but for the mixed initial quantum state of the system (4.6)
with βλ = h̄λ/(kB) = 1. The values of the other constants used in these calculations are the
same as that in figure 1. In general, the behaviour of the dynamical variables 〈Ŵ(t)〉, 〈N̂B(t)〉
and QM(t) is the same as in the previous case, showing collapses and revivals with almost
the same characteristic times, but with different initial conditions. However in this case the
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Figure 2. Same as figure 1 calculated with the same strengths but for a mixed initial state of the
system with βλ = 1. The insets display magnified views in time of the first collapse event for two
different temperature values: βλ = 1 (thick line) and βλ = 0 (thin line).

deformation observed in the envelope of QM(t) is more evident. In addition, the system
quantum state is super-coherent during the time evolution. In order to get an idea about the
temperature effects on the results we show in the insets in this figure magnified views in time
of the first collapse event for two different temperature values. The thick line is obtained for
βλ = 1 while the thin line for βλ = 0. If we compare the two calculations we observe that
the net effect of the temperature on the quantum dynamical variables is a translation in time,
preserving its profile.

Figures 3 and 4 are the versions of figures 1 and 2, respectively, for the intensity-dependent
interaction (x = i) calculated with the same set of parameters. Note that, when the interaction
is intensity-dependent, the Rabi oscillations of the quantum dynamical variables have a period
τO ≈ 1

/
ϑ

(i)
n̄ ≈ 0.25π and the oscillations collapse after a collapse time τC ≈ √

n̄/2 ≈ π .
The revival events have Gaussian envelopes and are almost exact regeneration of the initial
oscillations with a revival period τR ≈ n̄π/4 = 10π . Indeed, as shown in [26], exact
regeneration happens when the system is resonant (� = 0). These and other properties for
the inversion population factor and its relation with the system parameters in the case of the
harmonic oscillator coupling potential for the constant and intensity-dependent interaction
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Figure 3. Same as figure 1, but for the intensity-dependent interaction case (x = i).

cases are exhaustively analysed and discussed in [26, 29] when we have a pure initial quantum
state.

It should be pointed out that in the case of a mixed initial state (4.6) for the intensity-
dependent (x = i) interaction the deformation observed in the envelope of QM(t) is more
apparent than other cases, showing the asymmetry between the top and the bottom parts of
the envelopes. On the other hand, looking at the insets in the figures showing magnified
views in time, for the first collapse event with two different temperature values (βλ = 1
and 0) we conclude that the effect is not only a translation in time of the curve, but also a
deformation during the revival events. To conclude this discussion about the behaviour of the
dynamical variables for the harmonic oscillator coupling potential case we can say that the
inversion population factor 〈Ŵ(t)〉, the intensity of the shape-invariant coupling 〈N̂B(t)〉 and
the Mandel parameter QM(t) exhibit similar time evolutions, with equal characteristic time
factors (Rabi’s period, collapse times and revival period). In the case of 〈Ŵ(t)〉 and 〈N̂B(t)〉
it is easy to understand this similarity since we have

〈N̂B(t)〉 = γ |z|2
2

[1 − 〈Ŵ(t)〉]. (6.6)
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Figure 4. Same as figure 2, but for the intensity-dependent interaction case (x = i).

The Mandel parameter QM(t) has almost the same characteristic time factors because it is
defined by the energy spectrum en of the coupling potential.

6.2. Pöschl–Teller potential

The Pöschl–Teller potential, originally introduced in a molecular physics context, is closely
related to several other potentials, widely used in molecular and solid state physics such
as, for example, the Scarf potential, used in the modelling of 1D crystal, and the Rosen–
Morse potential, used in molecular models. In addition, the Pöschl–Teller potential becomes
the infinite square well in a limiting case. The superpotential, related to the Pöschl–Teller
potential via equation (1.3), is given by [33]

W(x, a1) =
√

h̄�{�(a1 + γ ) cot[�(x + λ)] + δ csc[�(x + λ)]}, (6.7)

where �, γ, δ and λ are real constants, while the remainders [1] in the shape-invariant condition
(2.1) are given by R(an) = �2η[2(an + γ ) + η], with the potential parameters related by
an+1 = an + η, where η = √

h̄/(2m�). Inserting these results into (2.6) we can prove that

en = κ2n(n + 2σ), (6.8)
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with κ = �η and σ = (a1 + γ )/η. To obtain the coherent state of the Pöschl–Teller potential,
we define the functional Zj

Zj =
√

g(a1; 2κ/η, κ)g(a1; 2κ/η, 2κ) e−iαR(a1) (6.9)

where the auxiliary function is given by g(aj ; c, d) = caj + d and α is a real constant. It
follows that

n−1∏
k=0

Zj+k =
√

κ2n�(ν + 2n + 1)

�(ν + 1)
e−iαen (6.10)

with ν = 2a1/η. Assuming γ = η/2 and using (6.8) and (6.10) into (2.10) and (2.9) we find
that

hn(ar) =
√

�(ν + 1)�(n + 1)

�(ν + n + 1)
eiαen ,

|z; ar〉 =
∞∑

n=0

√
�(ν + n + 1)

�(ν + 1)�(n + 1)
e−iαenzn|n〉.

(6.11)

The expansion coefficients Cn and the function argument factors ϑ(x)
n are given by

Cn = |z|2n�(ν + n + 1)

�(ν + 1)�(n + 1)
, ϑ(u)

n =
√

κ2n(n + ν + 1) + �2, and
(6.12)

ϑ(i)
n =

√
[κ2n(n + ν + 1)]2 + �2.

For the pure initial state (4.4) we can use (6.12) and the identity

1

�(ν + 1)

∞∑
n=0

�(ν + n + 1)

�(n + 1)
|z|2n = (1 − |z|2)−(ν+1), (6.13)

valid when |z| < 1, in (5.12) and obtain an expression for the weight distribution function:

P(n, z) = (1 − |z|2)ν+1

�(ν + 1)

[
�(ν + n + 1)

�(n + 1)

]
|z|2n. (6.14)

Figure 5 shows the results for the quantum dynamical variables for the constant (x = u)
interaction case in terms of the time variable τ/π , when the initial state of the system is the pure
quantum state (4.4). In these calculations we used the values |z|2 = 0.75, κ2 = 0.2, ν = 5.5
and � = 0.2. In this case the dynamical variables 〈Ŵ(t)〉, 〈N̂B(t)〉 and QM(t) show Rabi
oscillations compressed in time inside each revival event. Therefore it is not possible to define
a period for it. These revivals are bounded by asymmetric envelopes that recur periodically
with the revival time τR ≈ 10π and show more oscillations after each event. During the revival
event the oscillations collapse abruptly with collapse time rising because of the increase in the
oscillation number in each subsequent revival event. On the other hand, this increase in the
oscillation number makes the revivals overlap with each other later and the result is an irregular
and quasi-chaotic curve. If we compare the results for the three dynamical variables studied
it is possible to verify that the inversion population factor 〈Ŵ(t)〉 shows larger oscillations in
time than the other two variables. It is also evident from the figure that the asymmetry of the
Mandel factor QM(t) in relation to the collapse base line is more noticeable in this case. The
critical coherent value of the Mandel parameter is found to be

Qch = κ2{2|z|2(3 − 2ν) + ν + 2} − 1 (6.15)
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Figure 5. Time evolution of the dynamical variables for a Pöschl–Teller coupling potential
in the constant interaction case (x = u) for a pure initial state. The constant values used are
|z|2 = 0.75, κ2 = 0.2, ν = 5.5 and � = 0.2.

that, in the case of the constants used in this figure, gives the numerical value Qch = −1.9. As
QM(t) > Qch all the time we conclude that the coupling potential quantum states distribution
is always super-coherent.

Figure 6 is the version of figure 5 for the mixed initial quantum state (4.6) with
βλ = h̄λ/(kB) = 1. The values of the other parameters are the same as that in figure 1.
In general, the behaviour of the three dynamical variables is the same as in the case of the
pure initial quantum state of the system, showing collapses and revivals with almost the
same characteristic times, but with different initial conditions. However, QM(t) in this case
presents a more complicated pattern originating from the overlapping of different kinds of
oscillations. In order to have a more clear view of this new behaviour and to get an idea about
the temperature effects on the results, we show in the insets in this figure magnified views in
time of the first complete revival event for two different temperature values. The thick and
the thin lines were obtained for βλ = 1 and βλ = 0, respectively. We observe that the net
effect of the temperature on the quantum dynamical variables is not only a shift in time of the
curve, but also a change in its profile because of the superposition effects referred to above.
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Figure 6. Same as figure 5; calculated with the same strengths but for a mixed initial state of the
system with βλ = 1. The insets display magnified views in time of the first revival event for two
different temperature values: βλ = 1 (thick line) and βλ = 0 (thin line).

We also note the super-coherent character of the system quantum state during all the time of
its evolution (QM(t) > Qch).

Figures 7 and 8 are the versions of figures 5 and 6, respectively, for the intensity-
dependent interaction (x = i) calculated with |z|2 = 0.60, κ2 = 0.02, ν = 14.5 and � = 0.2.
The calculations for the mixed initial quantum state of the system, shown in figure 8, were
done with the same temperature factors used in figure 6. Note that, in the intensity-dependent
interaction case, the Rabi oscillations of the quantum dynamical variables present a regular
pattern with a defined period inside each revival event. The revival envelopes show a symmetric
form and each oscillation packet has its own pattern and oscillation period. Again, as in the
previous cases, the deviations from the main features of the dynamical behaviour appear in
the Mandel factor QM(t), which now shows an additional revival event around τ ≈ 50π with
a short oscillation period. The net effect of a finite temperature on the quantum dynamical
variables is a shift in time supplemented by a shift-up in the base line of the curve, while
preserving its pattern. The super-coherent character of the system quantum state during its
evolution is still also present.
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Figure 7. Same as figure 5, but for the intensity-dependent interaction case (x = i) calculated with
the constant values |z|2 = 0.6, κ2 = 0.02, ν = 14.5 and � = 0.2.

The set of system parameters used to get our results for the Pöschl–Teller coupling
potential was chosen to make evident the collapse and revival phenomenon in the physical
quantities. The collapse and revival times depend mainly on the values of the ν and κ

parameters. The detuning � parameter basically defines the temporal position of the whole
oscillatory pattern, without distortions. Finally, the role of the |z|2 parameter is mainly related
to the oscillatory pattern amplitude. We avoided including figures showing this fact because
too many figures are already included in the paper.

One can now contrast the Pöschl–Teller coupling potential with the harmonic oscillator.
The collapses and revivals are still present, as in the harmonic oscillator coupling case, but
with some new and very interesting properties, such as undefined Rabi oscillation periods,
revivals with asymmetric envelopes and increases in the Rabi oscillations. All these properties
are related to the form of new kind of coupling potential, introduced by the presence of its
eigenvalues en in the arguments of time-dependent expressions for the dynamical variables.

As a final observation about these applications we must point out that the possible left–
right symmetry of the Pöschl–Teller coupling potential, characterized by the value of the
δ parameter, does not have influence on the results shown in the figures. This parameter
influences the shape of the Pöschl–Teller potential, however has no effect on its energy
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Figure 8. Same as figure 6, but for the intensity-dependent interaction case (x = i) calculated with
the constant values |z|2 = 0.6, κ2 = 0.02, ν = 14.5 and � = 0.2.

spectrum en and on the potential parameters an. Since our general approach requires to
specify only the energy spectrum en and the arbitrary functional Zj ≡ Z(a1, a2, a3, . . .) of the
potential parameters to get the expansion coefficients Cn, the results do not have sensitivity
on this symmetry.

6.3. Self-similar potential

So far we have considered examples where the parameters an of the partner potentials V±(x) are
related by a translation. One class of shape-invariant potentials is given by an infinite chain
of reflectionless potentials V

(k)
± (x), (k = 0, 1, 2, . . .), for which associated superpotentials

Wk(x) satisfy the self-similar ansatz Wk(x) = qkW(qkx), with 0 < q < 1. These sets of
partner potentials V

(k)
± (x), also called self-similar potentials [34], have an infinite number of

bound states and its parameters are related by a scaling: an = qn−1a1, ∀n ∈ Z. These self-
similar potentials can be considered as quantum deformations of the multisoliton solutions
corresponding to the Rosen–Morse potential. Indeed working with this kind of potential it is
possible to get the Rosen–Morse, harmonic oscillator and Pöschl–Teller potentials as limiting
cases [34]. Shape invariance of self-similar potentials was studied in detail in [22]. In the
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Figure 9. Time evolution of the population inversion factor 〈Ŵ(t)〉 for a self-similar coupling
potential in the constant interaction case (x = u) with a pure initial state calculated for the
scaling parameter values q = 0.20, 0.80 and 0.95. The values of the other constants are
|z|2 = 10, R(a1) = 1.0 and � = 0.2.

simplest case studied the remainder of equation (2.1) is given by R(a1) = ca1, where c is a
constant. For this case one has

en =
(

1 − qn

1 − q

)
R(a1). (6.16)

To get a specific form for the coherent state for this coupling potential, we define the functional
Zj as

Zj = R(a1) e−iαR(a1), (6.17)

where α is a real constant. We find that
n−1∏
k=0

Zj+k = [R(a1)]
nqn(n−1)/2 e−iαen . (6.18)

Inserting (6.16) and (6.18) into (2.10) we can show that

hn(ar) = ρ−nq−n2/4
√

(q; q)n eiαen , with ρ =
√

R(a1)(1 − q)√
q

. (6.19)
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Figure 10. Same as figure 9, but for the intensity-dependent interaction case (x = i).

Using these results we obtain for the coherent state (2.9) and the expansion coefficient (5.9)
the expressions [24]

|z; ar〉 =
∞∑

n=0

qn2/4

√
(q; q)n

e−iαenξn|n〉, Cn = qn2/2|ξ |2n

(q; q)n
, (6.20)

where the q-shifted factorial (q; q)n is defined as (p; q)0 = 1 and (p; q)n = ∏n−1
j=0(1 − pqj ),

with n ∈ Z, and ξ = ρz. The quantities ϑ(x)
n are given by

ϑ(u)
n =

√[
R(a1)(1 − qn)

1 − q

]
+ �2, and ϑ(i)

n =
√[

R(a1)(1 − qn)

1 − q

]2

+ �2. (6.21)

For the pure initial state (4.4) we can use (6.20) and (6.21) into (5.12) and the definition of
the one-parameter family of q-exponential functions [35, 36]

E(µ)
q (x) =

∞∑
n=0

qµn2

(q; q)n
xn, with µ ∈ R (6.22)

to get the expression for the weight distribution function

P (q)(n, ξ) = qn2/2|ξ |2n

E
(1/2)
q (|ξ |2)(q; q)n

. (6.23)
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Figure 11. Time evolution of the dynamical variables for a self-similar coupling potential in
the constant interaction case (x = u) for a pure initial state. The constant values used are
|z|2 = 10, R(a1) = 1.0, q = 0.99 and � = 0.2.

If we compare this expression with that one obtained for the harmonic oscillator coupling case
we observe that (6.23) looks like the q-version of the Poissonian distribution (6.5), with the
usual factorial n! replaced by the q-shifted factorial (q; q)n and the exponential function e−|z|2

replaced by the q-exponential functions E
(1/2)
q (|ξ |2).

To see how the dynamical behaviour depends on the scaling parameter q we plot in
figures 9 and 10 the population inversion factor 〈Ŵ(t)〉 for the constant (x = u) and
intensity-dependent (x = i) interactions, respectively, for the values of the scaling parameter
q = 0.20, 0.80 and 0.95. We assume a pure initial quantum state of the system. The set
of other constants used is |z|2 = 10, R(a1) = 1.0 and � = 0.2. For the standard coupling
(x = u) the Rabi oscillations in 〈Ŵ(t)〉 show almost a regular pattern with a defined period
and symmetric envelope. The frequency of the oscillations increases with the q value and only
for higher values of this parameter the collapse and revival are complete. For the low and
intermediate values of q the adjacent revivals present a strong overlapping and the final result in
the Rabi oscillations and its envelope is an irregular pattern. When the interaction is intensity-
dependent (x = i) 〈Ŵ(t)〉 and the scaling parameter q goes to unity (i.e., as we approach
the harmonic oscillator limit) the revival events happen periodically. Each new revival event
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Figure 12. Same as figure 11 but for a mixed initial state of the system with βλ = 1. The insets
display magnified views in time of the first collapse event for two different temperature values:
βλ = 1 (thick line) and βλ = 0 (thin line).

shows more oscillations exhibiting a compression pattern in time with an irregular period.
For the low and intermediate q values the time evolution of 〈Ŵ(t)〉 is very similar to what
happens in the constant interaction case, but preserving its specific time oscillation properties.
We conclude that the scaling parameter q has a fundamental importance on the phenomenon
once its value defines the complete or incomplete nature of the collapse and revival of 〈Ŵ(t)〉.
Only for higher values of the scaling parameter q (the harmonic oscillator limit) we observe a
total collapse and revival of the population inversion factor.

Figures 11 and 12 display the results for the quantum dynamical variables for the constant
(x = u) interaction case in terms of the time variable τ/π , when we have a pure and mixed
initial state of the system, respectively. We take q = 0.99, |z|2 = 10, R(a1) = 1 and � = 0.2.
We note the increase in the collapse time of 〈N̂B(t)〉. As before the temperature effects on the
dynamical variable behaviour are related to a time-shift. As in previous cases, the deformations
in QM(t) manifest with a asymmetry in the envelopes of the oscillations. We find the critical
coherent value of the Mandel parameter to be

Qch = |z|2
[
R(a1)

q

]2
{[

R(a1)

q

]2

− 1

}
+ R(a1) − 1 (6.24)
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Figure 13. Same as figure 11, but for the intensity-dependent interaction case (x = i).

which, in the case of the constants used in this figure, gives the numerical value Qch = 0.21.
Therefore, except for short time intervals near τ = 0, in general we find QM(t) > Qch

indicating that the coupling potential quantum states distribution is super-coherent.
Figures 13 and 14 are the versions of figures 11 and 12, respectively, for the intensity-

dependent interaction (x = i) calculated with the same set of strengths. Note that in this case
the Rabi oscillations of the quantum dynamical variables in the first revival events present
almost a regular pattern with defined period and almost symmetric envelopes. Only for the
following revival events the compression in the Rabi oscillations, the increase in the oscillation
number and the asymmetry in the envelopes become more visible. In order to understand this
behaviour of the dynamical variables we observe that in the limit q → 1 we find en → nR(a1)

and Cn → |√R(a1)z|2n/n!, therefore if we also use the limit [35, 36]

lim
q→1

{
E(µ)

q [(1 − q)x]
} → ex (6.25)

it is possible to show that

lim
q→1

P (q)(n, ξ) −→
( |z1|2n

n!

)
e−|z1|2 , where z1 =

√
R(a1)z (6.26)

which corresponds to a Poisson distribution as we found in the harmonic oscillator coupling
case. In other words, the dynamical behaviour for a self-similar coupling potential goes to that
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Figure 14. Same as figure 12, but for the intensity-dependent interaction case (x = i).

of the harmonic oscillator in the limit q → 1. This similarity is gradually broken. It happens
because for short time intervals the effects of the discrepancy between the value of q = 0.99
and the limit q → 1 are less visible than for longer time intervals. Only for q values very
close to 1 we see the exact harmonic oscillator dynamics. It is remarkable that in the case of
the self-similar coupling potential, because of the introduction of an additional variable (the
scaling parameter q), we have a richer dynamical behaviour with the appearance of new and
interesting properties.

We must again emphasize that the set of system parameters used to get our results in this
case was also chosen with the intention to make evident the collapse and revival phenomenon
in the physical quantities. We observed that the collapse and revival times are basically defined
by the value of q. As in the other applications, the detuning � parameter defines the temporal
position of the whole oscillatory pattern, without distortions.

Finally we point out that in our discussion we avoided using analytic approximations,
such as the use of the saddle-point approach [26, 29]. Such analytic expressions are strongly
dependent on the coherent state coupling potential specific form and, as we showed in the
[24] there is a generalized way to construct coherent states for shape-invariant potentials. In
the case of the harmonic oscillator various approaches are equivalent resulting in the same
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final expression for |z〉. However in the case of other shape-invariant coupling potentials this
clearly is not the case and justification of analytical approaches is difficult.

7. Conclusions

Exactly soluble and fully quantum-mechanical models are rare. In this paper, we introduced
a class of shape-invariant bound-state problems which represent two-level systems coupled
with shape-invariant potentials. This represents a non-trivial coupled-channel problem which
may find applications in molecular, atomic and nuclear physics. Taking into account two
possible forms of coupling interaction (constant and intensity-dependent), and two possible
initial quantum states of the system (pure or mixed states) we obtained the wavefunction and
the density operator of the system. With this we obtained generalized expressions for some
dynamical variables of the system, such as the population inversion factor 〈Ŵ(t)〉, the intensity
of the shape-invariant coupling 〈N̂B(t)〉 and the Mandel parameter QM(t). We studied the
behaviour of these dynamical variables for three different kinds of shape-invariant coupling
potentials (harmonic oscillator, Pöschl–Teller and self-similar potentials). The results found
in these applications exhibit rapid oscillations which periodically collapse and regenerate in
different ways, depending on the nature of the coupling potential. Both collapse and revival
events observed are purely quantum effects resulting from the discreteness of the coupling
potential spectra. For shape-invariant coupling potentials other than the harmonic oscillator
the collapses and revivals show some new and interesting properties such as non-regular Rabi
oscillations with undefined periods; revivals with asymmetric wing envelopes and increases
in the Rabi oscillation numbers. This quantum phenomenon of decay and regeneration is well
known in a few restricted cases for the population inversion factor when we have harmonic
oscillator coupling potentials. Our results confirm that the occurrence of this interesting
quantum phenomenon is not restricted to the population inversion factor but is shared by the
other quantum dynamical variables and is related to the model properties, like the kind of
interaction and the coherent state associated with the coupling potential. It is remarkable that
in the case of the self-similar coupling potential we have a wide range of behaviours: the
scaling parameter q has a fundamental importance on the dynamical variable since its value
defines the complete or incomplete nature of the collapse and revival events.
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